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Drag reduction by polymer additives in decaying turbulence
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We present results from a systematic numerical study of decaying turbulence in a dilute polymer solution by
using a shell-model version of the finitely extensible nonlinear elastic and Peterlin equations. Our study leads
to an appealing definition of the drag reduction for the case of decaying turbulence. We exhibit several new
results, such as the potential-energy spectrum of the polymer, hitherto unobserved features in the temporal
evolution of the kinetic-energy spectrum, and characterize intermittency in such systems. We compare our
results with the Gledzer-Ohkitani-Yamada shell model for fluid turbulence.
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The phenomenon of drag reduction by polymer additives
[1], whereby dilute solutions of linear, flexible, high-
molecular-weight polymers exhibit frictional resistance to
flow much lower than that of the pure solvent, has almost
exclusively been studied within the context of statistically
steady turbulent flows since the pioneering work of Toms
[2]. By contrast, there is an extreme scarcity of results con-
cerning the effects of polymer additives on decaying turbu-
lence [3]. Experimental studies of decaying, homogeneous
turbulence behind a grid indicate, for such dilute polymer
solutions, a turbulent energy spectrum similar to that found
without polymers [4,5]. However, flow visualization via die-
injection tracers [5] and particle image velocimetry [6] show
an inhibition of small-scale structures in the presence of
polymer additives. To the best of our knowledge decaying
turbulence in such polymer solutions has not been studied
numerically. We initiate such a study here by using a shell
model that is well suited to examining the effects of polymer
additives in turbulent flows that are homogeneous and in
which bounding walls have no direct role. We obtain several
interesting results including a natural definition of the per-
centage drag-reduction Rp, which has been lacking for the
case of decaying turbulence. We show that the dependence of
Rp on the polymer concentration ¢ is in qualitative accord
with experiments [1] as is the suppression of small-scale
structures which we quantify by obtaining the filtered-wave-
number dependence of the flatness of the velocity field.

We will use a shell-model version of the FENE-P (finitely
extensible nonlinear elastic and Peterlin) [7,8] model for di-
lute polymer solutions that has often been used for studying
viscoelastic effects since it contains the basic characteristics
of molecular stretching, orientation, and finite extensibility
seen in polymer molecules. A direct numerical simulation of
the FENE-P equations is computationally prohibitive. This
motivates the use of a shell model that captures the essential
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features of the FENE-P equations. Recent studies [9] have
exploited a formal analogy [10] of the FENE-P equations
with those of magnetohydrodynamics (MHD) to construct
such a shell model. We investigate decaying turbulence in a
dilute polymer solution by developing a similar shell model
for the FENE-P equations. The unforced FENE-P equations
[7,8] are
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where p is the pressure, v, the kinematic viscosity of the
solvent, v, a “viscosity” parameter, p, the density of the sol-
vent, incompressibility is enforced via V-v=0, and the poly-
mer conformation tensor is R ,5=(R,R ﬁ)/R%, with the angu-
lar brackets indicating an average over polymer
configurations, of the dyadic product of the end-to-end vec-
tor R(x,¢) of the polymer molecules. The maximal extension
of the polymer molecules is restricted by the condition
(Rzy) < Ré. The contribution to the stress tensor because of the
polymer is 7,5=v,[P(X,))R 45— 84pl/ 7,, With 8,5 the Kro-
necker delta, 7, the time constant of the FENE-P model, and
P(x,1)=1/(1-R,,) (with repeated indices indicating a
trace). The concentration of the polymer is parametrized here
by c=v,/ v,

Our shell-model version of the unforced FENE-P equa-
tions, obtained by generalizing a shell model originally pro-
posed for three-dimensional MHD [11], is

d
T = q)n vo Vskivn + EEP(b)(Dn bb>
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p
where P(b)=1/(1-2,|b,|*), v, and b, are complex, scalar
variables representing the velocity and the (normalized)
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bers), for shell index n (n=1,...,N, for N shells),
Wlth q)n,vv:i(alknvn+lUn+2+a2kn—lvn+lvn—l +a3kn—2vn—lvn—2)a
D, = —ilaikyby 1Dy 2+ asky 1By 1Dy + asky oby 1Dy ),
an,vb=i(a4knvn+lbn+2+aSkn—lvn—lbn+l+a6kn—2vn—lbn—2)’ and
(Dn,bv=_i(a4knbn+lvn+2+a5kn—1bn—lvn+1+a6kn—2bn—lvn—2)- As
in Ref. [11] we choose a,=1, a,=a;=—1/2, a,=1/6, as
=1/3, and ag=-2/3. We solve Egs. (2) numerically by using
an Adams-Bashforth scheme [13] and double-precision arith-
metic, with a step size &t=10"> and N=22 shells, with k,
=1/16 and v,=1073. For all our runs (except those in Figs. 3
and 4) we set ¢=100. For numerical stability we add a nomi-
nal viscous term —kaibn to the shell-model equations for b,
and set v,/ v,=10713. With these parameter values, our code
is stable for 1.0< 7,<7.38, and we observe that the corre-
sponding percentage drag reduction R, (see below) lies in
the range 63% <Rp<98%. For specificity we use 7,=2.1
for the data presented here. The initial velocity field is taken
to be v'=k!%e!% (for n=1,2) and vgzké/ze‘kie”" (for 3<n
<N) and the initial polymer field to be bg:k,ll/ 2ei%n, with 6,-
and ¢,-independent random phases distributed uniformly be-
tween 0 and 2. In decaying turbulence, it is convenient to
measure time in units of the initial large eddy-turnover time.
For our shell model this is 7=1/(v" k) with 0¥
=[(Z,|vY»]"2, the root-mean-square value of the initial ve-
locity (we find 77=5.2). We use the dimensionless time 7
=t/7, (¢t is the product of the number of steps and &r). Our
runs are ensemble averaged over 10* independent initial con-
ditions with different realizations of phases. We define Reg
=1 /(k,v,) to be the value of the initial Reynolds number
(here Reg equals 12309). Shell-model energy densities are
defined as E,(k,) =(|a,|*/k,), with a=v for the velocity field
[11,12] and a=b for the polymer field. Equations (2) reduce
to those for the Gledzer-Ohkitani-Yamada (GOY) shell
model [12] when the polymer-field terms are suppressed. For
our GOY shell-model runs, we use initial parameter values
as for the FENE-P shell model to facilitate comparisons be-
tween the two.

Figure 1(a) shows the time evolution of the normalized
kinetic-energy spectrum E,(k,)/E,(k;) (successive curves
separated by time intervals of 0.27). We see a cascade of the
energy to large wave numbers after which the shape of the
spectrum does not change appreciably but the energy decays.
We observe the evolution of a flat portion in the spectrum
that vanishes upon cascade completion (plot with open
circles). Figure 1(b) compares kinetic-energy spectra at cas-
cade completion for our model [Egs. (2)] and for the GOY
shell model. In the inertial range, both spectra are indistin-
guishable and show a Kolmogorov-type k=3 behavior with
an observed slope of —1.67+0.01 (with errors from least-
squares fits), a result consistent with experiments [4,5] of
decaying, homogeneous turbulence behind a grid for a dilute
polymer solution. However, significant differences show up
in the dissipation range: the spectrum for the FENE-P shell
model falls much more slowly than its GOY-model counter-
part, indicating greatly reduced dissipation at large wave
numbers. Experimental [4,5] energy spectra do not cover as
large a range of spatial scales as we can cover in our shell-
model study, and thus, to the best of our knowledge, these
dissipation-range discrepancies of the energy spectra, with
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FIG. 1. (a) Log-log plots of the temporal evolution of the nor-
malized kinetic-energy spectra E, (k,)/E,(k;) of the FENE-P shell
model as a function of the wave number k,. The plot with open
circles is calculated at cascade completion. (b) Log-log plots of the
normalized kinetic-energy spectra E, (k,)/E,(k;) as a function of the
wave number k,, for the FENE-P and GOY shell models at cascade
completion. The observed slope is —1.67+0.01 for the range 0.25
<k,<64.

and without polymer additives, have not been noticed earlier.
We note that our results in Fig. 1(b) distinctly differ from
corresponding results [9] for statistically steady turbulence,
where a tilt in the spectrum has been observed at low wave
numbers in the FENE-P shell model relative to that obtained
from the GOY shell model.

In Fig. 2(a), we display the time evolution of the
potential-energy spectrum of the polymer E(k,) (with a tem-
poral separation of 0.27). Starting from an initially flat spec-
trum, we observe the appearance and subsequent growth of a
protuberance that bulges out maximally on cascade comple-
tion (plot with open circles) at a wave number corresponding
to the value, of order unity, of the ratio of the polymer time
constant 7, and the turbulence time scale 7(k,)
=1/[k,|v(k,)|] [Fig. 2(b)]. The result is in agreement with a
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FIG. 2. (a) Log-log plots of the temporal evolution of the
potential-energy spectrum Ej(k,) of the polymer field as a function
of the wave number k,. The plot with open circles is calculated at
cascade completion. (b) Log-log plot of the ratio of the time con-
stant 7, of the FENE-P shell model and the turbulence time scale
7(k,) as a function of the wave number k,, at cascade completion.
The inset shows the inverse of the turbulence time scale 7(k,) as a
function of the wave number k,, for the GOY shell model at cascade
completion.

hypothesis (for statistically steady turbulence) in Ref. [14]
wherein a polymer molecule, immersed in an eddy with a
turbulent time scale comparable to the polymer relaxation
time, undergoes a “coil-stretch” transition with an increment
in the potential-energy spectrum at the wave number corre-
sponding to the inverse of the eddy size. The inset in Fig.
2(b) is a plot of the inverse of the turbulence time scale 7(k,,)
as a function of the wave number k, for the GOY shell
model. In both plots, within the inertial range, 7(k,) ~k;2/ 3 a
result consistent with the —5/3 power law in the kinetic-
energy spectrum.

A log-log plot of the normalized kinetic-energy dissipa-
tion rate &/ &y of the FENE-P shell model versus dimen-
sionless time 7 for different values of ¢ is shown in Fig. 3
(with &/ Ero= (S, kv, | /(E,k2|vd]?), the additional index 0
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FIG. 3. The normalized kinetic-energy dissipation rate &4/ &y, of
the FENE-P shell model as a function of the dimensionless time 7
for different values of concentration c, as specified in the legend.

indicating values calculated at initial times). The reduction in
the peak value with respect to the value at initial times, with
increasing concentration, is indicative of an enhanced value
of the stored elastic potential energy in the polymer mol-
ecules due to their extension. The analogous plot for the
GOY shell model is identical to the plot for c=10 in Fig. 3.
We are therefore led to the following natural definition of the
percentage drag reduction Ry for decaying turbulence:

_ ( Eenl €0 ErnlEro

= X 100, 3
v gg,m/gg,() ) ( )

where the kinetic-energy dissipation rates &,=(Z,k2[v,%)
(the subscript a=f for the FENE-P shell model and a=g for
the GOY shell model) are calculated upon cascade comple-
tion when the dissipation rate is a maximum (indicated by an
additional subscript m) and normalized by their values at
initial times (indicated by an additional subscript 0). With the
choice of initial parameter values as specified above,
Eqm! Eqp equals 234.96+0.01. In Fig. 4, we use Eq. (3) to
plot R, as a function of ¢. The inset figure from Ref. [15] is
a similar plot for a dilute solution of Carrageenan [16] (a
seaweed derivative) in a pipe-flow Reynolds number of
14 000. The qualitative agreement with a laboratory experi-
ment (for statistically steady turbulence) supports our defini-
tion of drag reduction for decaying turbulence.

Laboratory experiments in both statistically steady [17]
and decaying [5,6] turbulent flows of dilute polymer solu-
tions show an inhibition of small-scale structures and nar-
rower probability distribution functions of velocity differ-
ences [17]. We plot in Fig. 5 the flatness Fg
=(ogM/vgly  (ogh=ElvaD. ogh=(E, v,
with n=K,...,N), K=1,...,N, as a function of the “filtered”
[18] wave number K for the FENE-P and GOY shell models
at cascade completion. We observe that, in the GOY shell
model, the flatness F exhibits unbounded growth for large
wave numbers, an indication of strong intermittency in the
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FIG. 4. Plot of the percentage drag reduction Ry, [Eq. (3)] as a
function of the concentration c¢. The inset shows a plot for the same
quantities taken from Ref. [15] (see the text for definitions).

dissipation scales. However, for the FENE-P shell model, we
observe that the flatness is greatly reduced relative to that for
the GOY shell model and, in fact, decreases in the dissipa-
tion scales. Our results are consistent, therefore, with labora-
tory experiments which show a suppression of small struc-
tures that would imply reduced intermittency in the
dissipation range of our shell model.

Laboratory experiments [5,6] of decaying turbulence be-
hind grids indicate a reduced decay rate of the kinetic energy
in a dilute polymer solution, relative to the pure solvent. In
the initial period of decay, before the integral scale of turbu-
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FIG. 5. Plot of the flatness F as a function of the filtered wave
number K (see the text for definitions) at cascade completion for the
FENE-P and GOY shell models.

lence becomes of the order of the size of the system (the
minimum wave number, in the case of shell models), we
observe a decay rate of —1.80+0.01 for the FENE-P shell
model and a decay rate of —2.01+£0.02 for the GOY shell
model (a result consistent with Ref. [19]).
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